本文新提出随机增量张量奇异值分解方法.当数据逐步增加时,新方法能够在保持原数据的随机奇异值分解基础上,通过计算新增数据的奇异值分解得到更新后数据的张量奇异值分解.基于随机增量张量奇异值分解建立新的人脸识别模型.数值实验表明新模型与已有人脸识别模型相比具有较高的识别率.