摘要
空隙率是石油化工企业中非常重要的参数之一。空隙率在线测量过程中存在较大的随机性和不确定性,很难预知空隙率的变化。为了实现对空隙率的预测,提前对两相流系统进行控制和优化,提出了基于改进猫群优化(CSO)算法长短期记忆(LSTM)网络的空隙率预测算法。利用LSTM善于处理时间序列型数据的特点对空隙率进行预测,在CSO中引入模拟退火(SA)算法和平均惯性权重,改善了在预测中易陷入局部最优和全局搜索能力较弱的缺点,保证了位置的收敛性。结果表明,该算法模型具有较高的预测精度和收敛速度,可以更快更精确预测空隙率的变化,克服了数据不确定且随机的难点,对提前控制和优化两相流系统具有较高的工业应用价值。
- 单位