摘要

经典的卷积神经网络模型损失函数在设计时只考虑输出与标签之间的比较,没有涉及到图片之间的差异.为了提高卷积神经网络模型提取特征的差异,提出了基于Triplet network模型约束的卷积神经网络模型,这种方法提高了卷积神经网络提取有效特征的能力,减少数据集数量对于模型的影响.在MNIST数据集和cifar-10数据集上进行实验,提出的新模型在这2个数据集上比经典的卷积神经网络模型识别效果更好.