摘要

提出一种基于超像素仿射传播聚类的视网膜血管分割方法。首先对预处理后的图像提取Hessian最大本征值、Gabor小波、B-COSFIRE滤波特征,构建3维眼底图像像素特征;同时对眼底图像进行超像素分块,并采用一致性准则对所分的超像素块进行筛选,得到超像素候选块;把超像素候选块当作样本点,把候选块内的像素特征的统计平均值当作特征向量,在特征空间中进行仿射传播聚类得出血管类和背景类两个聚类中心;根据血管类和背景类两个聚类中心,采用最近邻方法对眼底像素进行分类,实现对视网膜血管的分割。实验表明:在DRIVE和STARE眼底图像数据库上,本文算法的平均准确率分别为94.63%和94.30%;相较于K-means、模糊C均值(FCM)和其他聚类方法,本方法对血管的识别度高,所分割的视网膜血管有较好的连续性和完整性。