摘要

针对高压隔离开关故障诊断时特征库中故障类别不完备的问题,提出了基于多重支持向量域描述(Multi-SVDD)的故障诊断方法。首先通过主成分分析将正常和已知故障样本特征量按贡献度进行排序作为新的特征向量,并以特征量贡献度构造加权高斯核函数,提高对类间特征差异的辨识能力。然后利用粒子群算法对核参数进行优化,提高模型的推广能力和对样本类别识别的正确率。其次对正常和已知故障样本集进行训练,建立描述隔离开关不同工作状态的超球体作为预测模型。最后利用Multi-SVDD对样本空间进行划分并计算待测样本点至各超球体中心的距离,确定样本所属的种类。试验结果表明,该方法可以有效处理高压隔离开关故障诊断中故障类别不完备的问题,在诊断出已知故障的同时可对未知故障给出判断。

全文