摘要

为解决复杂施工场景下的小目标检测效果不佳和漏检问题,提出一种基于YOLOv4的改进算法。在检测网络中设计多尺度CAU和SAU上下文特征融合机制,利用全新的特征融合方式增强网络多尺度空间和通道信息表征,在此基础上改善网络特征融合性能。设计CSP_F跨阶段特征融合模块代替原有普通卷积块(CBL*5),防止检测网络梯度消失和网络参数计算量过大。改进模型类别损失函数并进行实验验证,其结果表明,改进算法能满足不同场景检测要求,对小目标有较好检测效果。

全文