摘要
针对不同星载SAR系统灵敏度下的SAR图像舰船分类准确率不同的问题,文中提出了一种系统灵敏度对舰船分类影响的研究方法。采用所提出的基于背景像素填充的目标旋转数据扩充方法,并结合微调卷积神经网络模型对舰船进行分类。同时降低图像的信噪比以等效获得不同系统灵敏度的数据集,再分析其灵敏度对舰船分类的影响。仿真结果表明,随着系统灵敏度的降低,舰船分类准确率的下降趋势逐渐变缓,且当最差系统灵敏度降为-13.58 dB时,准确率可达到75%。因此,所提方法可应用于舰船分类对星载SAR系统灵敏度的需求分析,而仿真结果也为低系统灵敏度的星载SAR舰船分类提供了参考。
- 单位