摘要

自动简答题评分(Automated short answer grading, ASAG)是利用自然语言处理技术减少教育工作者人工评分负担。值得注意的是,目前大多数ASAG系统存在缺陷,学生通过复制或稍微改写标准答案取得高分的欺骗行为。该文探索一种基于规则的数据增强方法研究ASAG系统的鲁棒性。然而,由于自然语言存在离散性因素,导致基于规则的数据增强合成的样本的多样性受到限制。该文提出基于知识蒸馏的数据增强策略,以并行的方式堆叠不同的单个数据增强方法。此外,该文提出基于监督对比学习的ASAG系统,使得模型能学习到有效的句子表示。该文在University of North Texas和SemEval-2013两个公开数据集上进行了评估,与基线模型相比,该文提出的系统在性能上有实质性提高。