摘要

针对遥感影像卷积神经网络(CNN)分类会导致特征信息丢失及泛化能力差的问题,提出一种基于通道注意力和混合注意力改进的胶囊神经网络分类模型。首先,为了胶囊神经网络能够适应于大尺寸输入图像,在特征提取模块中使用2个最大池化层;其次,为了提高分类精度,分别将SENet注意力和CBAM注意力加在特征提取模块的最后一层去改进特征提取模块;最后,将样本集随机地划分为训练集、验证集和测试集,进一步使用训练集和验证集训练模型,测试集测试模型,使用AID数据集对模型分类的泛化能力进行验证。实验结果表明:基于SENet网络改进的胶囊神经网络的准确率与Kappa系数要高于其他模型,泛化能力也优于其他模型,本文提出的模型的总体分类精度和泛化能力有了显著性提升,从而验证了本文方法的可行性和使用性。