摘要

针对四旋翼无人机(UAVs)系统,该文提出一种基于线性降阶滤波器的深度强化学习(RL)策略,进而设计了一种新型的智能控制方法,有效地提高了旋翼无人机对外界干扰和未建模动态的鲁棒性。首先,基于线性降阶滤波技术,设计了维数更少的滤波器变量作为深度网络的输入,减小了策略的探索空间,提高了策略的探索效率。在此基础上,为了增强策略对稳态误差的感知,该文结合滤波器变量和积分项,设计集总误差作为策略的新输入,提高了旋翼无人机的定位精度。该文的新颖之处在于,首次提出一种基于线性滤波器的深度强化学习策略,有效地消除了未知干扰和未建模动态对四旋翼无人机控制系统的影响,提高了系统的定位精度。对比实验结果表明,该方法能显著地提升旋翼无人机的定位精度和对干扰的鲁棒性。