摘要

目的针对中厚板表面复杂、缺陷识别率低的问题,设计一种有效的候选窗口提取方法,提升中厚板表面缺陷检测的准确性与实时性。方法引入视觉选择性注意机制,采用一种基于二值化赋范梯度特征(BinarizedNormedGradients,BING)的一般对象估计算法来快速准确地提取缺陷感兴趣区域(Regionof Interest,ROI),有效缩短搜寻过程。首先将样本归一化到8×8大小,提取规范化梯度特征(Normed Gradients,NG),学习一个测量显著性的线性SVM分类器来预测图像窗口含有缺陷的可能性。然后再通过样本尺度优化显著性评分,学习一个校准显著评分的线性SVM分类器。最后将两个SVM模型级联,用于在线检测,提取缺陷感兴趣区域。结果将训练好的BING模型与Inception-V3卷积神经网络相结合,用于中厚板表面缺陷检测与识别,BING算法有效减少了ROI数量,在ROI数量为500的情况下,达到了98.2%的召回率。结论在保证缺陷召回率的前提下,BING生成的ROI数量比滑动窗口遍历方式少2个数量级,有效减少了后续识别算法的计算量,有利于引入复杂的分类器提升中厚板表面缺陷识别的准确率。