摘要

网格计算涉及的资源通常存在区域和组织差异,涉及的作业(Job)则存在数据和计算两种密集类,针对具有混合特征的网格计算,提出了基于SCE中间件的遗传优化网格作业调度算法。首先分析了具有不同密集类型Job的混合网格计算模型,得到作业与资源的属性表示,以及作业调度与资源之间的约束关系。然后根据混合网格计算模型分析,将其转化成约束条件下的最优解问题,引入改进遗传算法进行求解。在种群初始化时根据适应性筛选出一部分样本作为初始种群,利用高质量样本启发寻优,降低进化代数;同时针对每个染色体的作业执行速度和染色体内每个作业的执行速度依次设计适应性,从而加速收敛;通过适应性修正、交叉和变异处理,防止种群出现过早或者局部收敛,并且增加种群多样性。最后基于SCE部署作业调度,从中间件进一步提升作业调度效率,减少出错。实验结果表明,基于SCE中间件的遗传优化网格作业调度算法能够有效抑制执行错误的发生,提升作业调度与资源配置的效率,降低作业调度响应时间。

  • 单位
    郑州师范学院