摘要
活动轮廓模型方法不需要训练集且能较好利用边缘信息,但对初始轮廓较敏感,在处理复杂背景图像时分割不够精确。U-Net 3+网络可以分割更复杂的医学图像,但需要大量的人工标记,且模型的特征提取机制导致其在非典型边界特征的决策时通常是不准确的。因此,针对训练集较小的医学图像,提出了一种融合卷积神经网络和活动轮廓模型的医学图像自动分割模型。模型通过U-Net 3+网络获得目标先验信息,使用先验信息构造拟合能量项,并融合到活动轮廓模型中约束曲线演化。在皮肤镜病变和胸部X光片图像上测试,该模型的分割精度高于单独使用U-Net 3+网络和活动轮廓模型的分割结果。
- 单位