基于FS-T2WI的影像组学鉴别甲状腺乳头状癌与腺瘤

作者:黄家荣; 钱贵珍; 徐建; 苗重昌*
来源:放射学实践, 2023, 38(06): 705-708.
DOI:10.13609/j.cnki.1000-0313.2023.06.006

摘要

目的:探讨基于FS-T2WI的影像组学模型对甲状腺乳头状癌与腺瘤的鉴别诊断价值。方法:回顾性分析经手术病理证实的甲状腺结节共72个,其中乳头状癌42个,腺瘤30个。患者术前均行甲状腺MRI平扫检查。所有结节按7:3的比例随机分为训练集和测试集。在FS-T2WI图中逐层勾画病灶并提取影像组学特征,后使用曼-惠特尼U秩和检验以及最小绝对收缩和选择算子对特征进行降维,使用支持向量机(SVM)分类器对提取的特征进行机器学习。通过绘制ROC曲线下面积(AUC)、敏感度、特异度3个指标评价所构建模型的效能。结果:从FS-T2WI序列中提取出1409个特征,经过曼-惠特尼U检验和LASSO回归降维筛选出14个特征,应用SVM所建立的术前预测模型显示训练集AUC 0.89,敏感度79%,特异度86%;测试集AUC 0.85,敏感度77%,特异度67%。结论:基于FS-T2WI的SVM影像组学模型可鉴别甲状腺乳头状癌和腺瘤,从而为甲状腺结节患者的风险预测和个体化治疗提供有效信息。

全文