摘要

针对假新闻内容检测中分类算法模型的检测性能与泛化性能无法兼顾的问题,提出了一种基于特征聚合的假新闻检测模型CCNN。首先,通过双向长短时循环神经网络提取文本的全局时序特征,并采用卷积神经网络(CNN)提取窗口范围内的词语或词组特征;然后,在卷积神经网络池化层之后,采用基于双中心损失训练的特征聚合层;最后,将双向长短时记忆网络(Bi-LSTM)和CNN的特征数据按深度方向拼接成一个向量之后提供给全连接层,采用均匀损失函数uniform-sigmoid训练模型后输出最终的分类结果。实验结果表明,该模型的F1值为80.5%,在训练集和验证集上的差值为1.3个百分点;与传统的支持向量机(SVM)、朴素贝叶斯(NB)和随机森林(RF)模型相比,所提模型的F1值提升了9~14个百分点;与长短时记忆网络(LSTM)、快速文本分类(FastText)等神经网络模型相比,所提模型的泛化性能提升了1.3~2.5个百分点。由此可见,所提模型能够在提高分类性能的同时保证一定的泛化能力,提升整体性能。