摘要

针对现有集群异常作业预测方法预测效率低、预测时间长的问题,提出一种分段集群异常作业预测(SCAJP)方法.该方法分为离线预测和在线预测两个阶段:离线预测阶段,依据作业子任务的静态特征对子任务终止状态进行预测,并仅在线预测此阶段的正常子任务所属作业;在线预测阶段,在计算作业子任务动态特征的同时,采用改进门控递归单元(IGRU)神经网络根据动态特征实时预测任务终止状态是否异常.两个阶段的最后均根据作业与其子任务的相关性检索异常作业,实现对异常作业的预测.实验结果表明,该方法在灵敏度、精确度和预测时间方面明显优于其他方法.