摘要
非刚性点集配准研究是模式识别领域的一项重要基础研究.本文在当前流行的非刚性点集配准算法的基础上提出了两个主要贡献:1)模糊形状上下文(Fuzzy shape context, FSC)特征; 2)基于局部向量特征的局部空间向量相似性约束项.本文首先进行基于特征互补的对应关系评估,在这一步骤中定义了模糊形状上下文特征,然后基于模糊形状上下文特征差异和全局特征差异设计了特征互补的高斯混合模型.其次,进行基于约束互补的空间变化更新.在这一步骤中,定义了局部向量特征,建立了局部空间向量相似性约束项.本文算法通过使用特征互补的高斯混合模型进行对应关系评估,并将配准问题转化为可以用期望最大化(Expectation maximization, EM)算法解决的参数优化问题,通过创建包含局部空间向量相似性约束项的能量方程优化了空间变换更新.本文首先测试了模糊形状上下文特征的检索率,然后采用公开数据集测试了算法在点集配准与图像配准的性能.在与当前流行的十种算法的对比实验中,本文算法均给出了精确的配准结果,并在大部分实验中精度超过了当前流行算法.
- 单位