摘要

Transformer是一种基于编码器-解码器、完全使用自注意力机制的深度神经网络结构,目前已经成功应用于多目标追踪,性能得到大幅提升。本文首先分析了Transformer网络整体结构,归纳Transformer结构具有的优势。然后根据查询方式将基于Transformer结构的多目标追踪方法分为:基于稀疏查询的方法和基于密集查询的方法,对相关模型分析总结。最后介绍常用数据集,对比分析模型性能,指出基于Transformer结构的多目标追踪面临的挑战与未来研究方向。

  • 单位
    河北经贸大学

全文