摘要

利用光谱技术结合化学计量学对李子可溶性固形物含量检测进行研究,为李子品质无损检测提供科学方法。通过反射式光谱采集系统获取了"红"李子和"青"李子的平均光谱,并对原始光谱数据进行预处理;应用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对预处理后的光谱数据提取特征波长;分别建立基于全光谱和特征波长的预测李子可溶性固形物含量的误差反向传播(BP)网络模型。结果表明:利用SPA和CARS算法分别从全光谱的1024个波长中选取出31和104个特征波长;而基于特征波长建立的CARS-BP网络模型效果最优,其相关系数rc为0.998,rp为0.887,均方根误差RMSEC为0.026,RMSEP为1.767。这表明光谱技术结合化学计量学进行李子可溶性固形物含量的无损检测具有可行性。

  • 单位
    贵阳学院