摘要

为提高短期电力负荷预测精度,提出了一种天牛须搜索算法优化的LSSVM短期电力负荷预测模型。引入模拟退火算法的蒙特卡洛法则对优化算法进行改进,提高了该算法的稳定性。将改进BAS算法优化后的LSSVM模型用于短期电力负荷预测问题。使用小波阈值去噪处理电力负荷数据,减少一些不确定性因素对负荷预测的影响,提高了预测精度。选择四川某地区电网实际历史负荷数据进行分析和预测,并与PSO-LSSVM、LSSVM预测模型进行对比分析。算例结果表明,所提出的IBAS-LSSVM预测模型与LSSVM相比预测精度提升了1. 5%左右,与PSO-LSSVM相比算法运行时间缩短了70%,且算法稳定性更高,证明了该方法的实用性与有效性。