摘要
传统的子空间聚类和谱聚类中普遍使用谱松弛方法聚类,需要先计算拉普拉斯矩阵的特征向量。特征向量中包含负数,根据元素的正负可以直接得到二类聚类的结果。对于多类聚类问题,需要递归地进行二划分,或在特征向量空间中使用k-means算法聚类,分配类簇标签是间接的,这种后处理的聚类方式会增加聚类结果的不稳定性。针对谱松弛的问题,提出了一种非负拉格朗日松弛优化的子空间聚类算法,在目标函数中集成了自表示学习和秩约束。通过非负拉格朗日松弛来求解相似性矩阵和隶属矩阵,并保持隶属矩阵的非负性。在这种情况下,原来的隶属矩阵就变成了类簇的后验概率,当算法收敛时,只需将数据点分配给具有最大后验概率的类簇,即可得到聚类结果。与已有的子空间聚类和谱聚类方法相比,所提出的算法设计了新的优化规则,可以实现类簇标签的直接分配,不需要额外的聚类步骤。最后,给出了算法的收敛性证明。在五个基准聚类数据集上的大量实验表明,所提算法的聚类性能优于近几年来的子空间聚类方法。
- 单位