现有的统计套利策略大多建立在协整理论和GARCH模型的基础上.离散Fourier变换(DFT)的思想可以挖掘价差序列周期性、非线性的特征,保证其在拟合和预测中的精确度.利用沪铜期货合约的收盘价数据进行实证分析,研究结果表明:在高频数据下,新模型对数据的拟合和预测效果要明显优于传统的套利模型,在相同的交易规则下,新模型的套利成功率和收益率都高于传统的统计套利模型.