摘要
针对现有命名实体识别方法存在的语义信息获取不全面问题,提出基于Affix-Attention的命名实体识别语义补充方法。将句子和句子中每个单词对应的词缀输入到编码层,使用Bi-LSTM提取上下文特征。在编码层设计特征融合模块、建模文本特征与词缀特征的对应关系,使用Affix-Attention同时关注文本信息和词缀信息进行语义补充。解码层使用CRF层得到目标序列。在生物医学领域的JNLPBA-2004和BC2GM基准数据集上的试验结果综合评价指标F1达到81.73%、84.73%;在公共数据集CONLL-2003中试验结果综合评价指标F1达到91.35%。试验结果表明,本研究方法能够有效获取词的内部语义特征,融合文本信息和词缀信息,达到语义补充的效果,提升命名实体识别的性能。
- 单位