摘要

为提高"煤改电"地区短期负荷预测水平,本文基于北京市大兴区"煤改电"工程,探索利用神经网络算法对"煤改电"地区短期负荷进行预测。本文首先研究了"煤改电"地区负荷的年周期、周周期以及日周期负荷特性,并对负荷预测进行分类,分析得出了负荷预测的主要影响因素,明确了负荷预测的步骤及误差分析方法。其次,本文研究了BP神经网络的构成和运算过程,分析了历史数据处理方法,建立了基于BP神经网络的"煤改电"地区短期负荷预测模型,并对短期负荷预测模型进行检验。最后,为进一步提高预测效果,本文研究利用粒子群算法和列文伯格-马夸尔特算法对神经网络进行优化改进,建立了基于粒子群算法优化的BP神经网络负荷预测模型,满足了预测目标精度要求。

  • 单位
    国网北京市电力公司