基于高光谱的油菜叶片SPAD值估测模型比较

作者:**晓; 周蕊*; 李波; 欧毅; 黄祥; 虞豹
来源:福建农业学报, 2021, 36(11): 1272-1279.
DOI:10.19303/j.issn.1008-0384.2021.11.003

摘要

【目的】比较基于高光谱参数的油菜叶片SPAD值估算模型效果。【方法】在分析光谱反射特征和光谱参数与SPAD值相关性的基础上,利用光谱特征参数优选并构建了偏最小二乘回归(PLSR)、传统反向传播神经网络(BPNN)、支持向量回归(SVR)和深度学习神经网络(DNN)等模型对叶片样本叶绿素SPAD值进行估测。【结果】(1)叶片原始光谱与叶片SPAD值在425~495 nm的蓝波、665~680 nm的红波区域呈现微弱正相关,与红边波段均呈现负相关,并在510~650 nm的绿、黄波段和690~735 nm的红边波段显著负相关;(2)与叶片SPAD值显著线性相关的SDb与SDy、CARI与MCARI、CI与NDVI705等三组光谱特征的组内参数具有一定的可替代性,而且有助于提高SPAD模型预测精度;(3)基于高光谱参数的深度学习DNN模型决定系数R2为0.93,RPD为3.92,具有较高的预测能力,SVR模型次之,PLSR和BPNN模型效果一般。【结论】油菜叶片光谱参数之间存在不同程度的相关性,基于机器学习的非线性估计模型具有较高的稳定性和预测能力,深度学习算法在油菜叶片叶绿素SPAD值估测方面具有更好的估测能力。

  • 单位
    重庆市农业科学院