摘要
随着医学成像技术的不断发展,病理识别在医学诊断过程中的作用越来越重要。人工智能领域的机器学习可以帮助完成医学图像诊断的自动识别,数字化地辅助医学诊断过程,同时降低医务工作者的工作量。卷积神经网络(CNN)是近年发展起来的一种非常有效的机器学习方法,属于深度学习的范畴,它能够完整地模拟人类的图像识别过程,并且已经在图像识别领域取得了优异的成绩。本文将卷积神经网络应用于病理图像的识别中,同时对病理图片进行了采集、整理和智能学习,完成并分析了算法对比实验,最终实现了对病理图像的优化识别,提高了病理图像的识别率,验证了算法的有效性。
-
单位南京工业大学浦江学院