摘要

针对数据集中数据分布密度不均匀以及存在噪声点,噪声点容易导致样本聚类时产生较大的偏差问题,提出一种基于网络框架下改进的多密度SNN聚类算法。网格化递归划分数据空间成密度不同的网格,对高密度网格单元作为类簇中心,利用网格相对密度差检测出在簇边界网格中包含噪声点;使用改进的SNN聚类算法计算边界网格内样本数据点的局部密度,通过数据密度特征分布对噪声点进行类簇分配,从而提高聚类算法的鲁棒性。在UCI高维的数据集上的实验结果表明,与传统的算法相比,该算法通过网格划分数据空间和局部密度峰值进行样本类簇分配,有效地平衡聚类效果和时间性能。