摘要

针对目前跨社交网络用户对齐算法存在的网络嵌入效果不佳、负采样方法所生成负例质量无法保证等问题,提出一种基于知识图嵌入的跨社交网络用户对齐(KGEUA)算法。在嵌入阶段,利用部分已知的种子锚用户对进行正例扩充,并提出NearK负采样方法生成负例,最后利用知识图嵌入方法将两个社交网络嵌入到统一的低维向量空间中。在对齐阶段,针对目前的用户相似度度量方法进行改进,将提出的结构相似度与传统的余弦相似度结合共同度量用户相似度,并提出基于自适应阈值的贪心匹配方法对齐用户,最后将新对齐的用户对加入到训练集中以持续优化向量空间。实验结果表明,提出的算法在Twitter-Foursquare数据集上的hits@30值达到了67.7%,比用户对齐现有最佳算法的结果高出3.3~34.8个百分点,显著提升用户对齐效果。