摘要

针对强背景噪声干扰下微弱故障冲击特征难以准确检测的问题,提出了一种基于自适应Morlet小波参数字典设计的齿轮故障诊断法。该方法基于信号局部分割和全局分析的思想,采用相关系数(CF)与峭度指标综合评价小波函数与目标信号的局部匹配度与全局匹配度,利用鲸鱼优化算法(WOA)自适应确定小波字典参数,逐点时移构建原子参数字典后,结合正交匹配追踪(OMP)检测故障特征信息。对仿真故障信号和齿轮实际故障信号分析的结果表明,该方法可以有效提取齿轮微弱故障特征,诊断效果优于传统的相关滤波算法(CFA)、小波降噪法和K-SVD学习字典方法。

全文