从电力负荷的变化特点入手,提出基于机器学习的混合模型,该模型采用具有自适应噪声的完整集合经验模式分解技术对电力负荷进行分解,剔除高频噪声影响后,对负荷序列进行重构,采用多目标花授粉优化算法对极限学习机进行优化,分析认为该模型可提高极限学习机预测的准确性和稳定性,结合江苏省月度负荷预测案例验证了模型的有效性。