摘要
针对在配电施工作业场景中传统目标检测算法对施工安全设备识别精度低和效果不佳的问题,本文提出了一种面向配电线网施工安全设备识别的YOLO-Rotating算法。该算法以YOLOv8为基础,采用深度可分离卷积代替部分Conv设计C2f-R模块,减少模型参数量,提升感受野;使用GAM注意力模块增强特征提取能力,提高语义信息并减少干扰;最后增加旋转目标检测模块使检测框与目标轮廓更贴合,提高检测准确度。实验结果表明,在配电安全设备数据集上,YOLO-Rotating算法的平均精度均值(mAP)达到84.6%,比原算法提高了3.4%,精确度提升了2.07%。该算法具有更高的检测精度和更好的实际应用价值,满足边缘计算设备的要求,适用于配电现网作业施工场景。
-
单位贵州电网有限责任公司