摘要

针对现有道路表观病害检测识别精度低、漏判、误检率高的问题,提出了一种改进的道路表观病害检测高精度识别模型(improved pavement detection-YOLOv5, IPD-YOLOv5)。在YOLOv5的主干特征提取网络中添加由不同空洞卷积组成的ASPP模块,引入SE-Net注意力机制以加强算法从裂缝图像中提取不同尺度特征的能力,实现多尺度特征图的有效融合。结果表明:较传统检测算法,所提的IPD-YOLOv5模型在道路裂缝病害检测上的识别精度最高,其中平均精度比未改进的YOLOv5算法提高了7.47%,漏判率降低了10.29%。

  • 单位
    福建省广播电视大学