摘要

贝叶斯个性化排序(BPR)算法是隐式反馈问题中最具代表性的算法之一,但BPR算法中提出的用户间独立性假设和个人对2个项目的成对偏好假设都过于严格。GBPR算法重新定义了用户的个人偏好,并使用由志趣相投的多个用户形成的组偏好来代替个人偏好,以放宽用户间独立性的假设。DPR算法把偏序对作为基本单元来优化偏好间的差值而不是偏好的差值,以放宽个人对2个项目的成对偏好的假设。结合上述研究,本文提出e-GDPR算法,进一步提高用户对物品的偏好预测能力。该算法可以充分利用数据集中的用户信息(如性别、消费水平)和商品信息(如商品种类),把组偏好引入DPR算法并根据消费水平与性别对用户进行分组后随机抽样,以创建更具代表性的用户组,本文对采样方式进行改进,不再使用随机采样,而是随机抽取由同一种类的2个商品构成的三元组样本,并认为它们比随机选择的商品所组成的三元组样本更可靠。然后,引入隐式反馈偏好量化模型来计算用户的个人偏好,并能充分考虑隐藏在各种隐式操作类型背后的用户偏好。最终,在京东电商数据集上进行仿真推荐实验,实验结果表明与基线算法相比e-GDPR算法可以取得更好的推荐效果。