摘要
为了精确实现电能质量扰动的定位和分类,提出了一种基于改进的希尔伯特-黄变换(Hilbert-Huang transform,HHT)的电能质量扰动辨识新方法。对传统HHT得到的幅频参数运用极值滑窗均值算法进行去极值均值化处理,提高了在Hilbert-Huang谱中判断扰动发生和结束时刻的精确性。通过新方法求出幅频曲线、Hilbert-Huang谱和Hilbert边际谱并从中提取扰动的频率成分、持续时间、电压幅值和Hilbert-Huang谱幅值4个特征量,以实现扰动的分类与辨识。仿真结果表明:改进HHT和决策树的结合不仅适用于单一扰动的定位与分类,对复杂非平稳扰动也能取得较好的效果,具备一定的抗噪能力。
- 单位