摘要
针对机器人部署调试中表计需逐个配置的问题,提出基于神经网络学习及一维曲线分析的表盘指针、刻度识别方法。基于Faster-RCNN(faster region-based convolutional network),初步识别刻度盘位置,从而确定指针运动圆心。将图像以圆心为中心进行极坐标展开后,通过分析一维曲线的频域特征筛选刻度所在区域,统计不同区域灰度峰谷值的形式确定刻度和指针的真实位置。最后对几种典型表计进行实验分析,验证所提方法的有效性。实验结果显示,该方法对表计样本量较多的表计类型,可成功实现自动读数功能。
-
单位许昌开普电气研究院; 中山大学新华学院