摘要

针对传统图像稀疏表示字典学习算法仅对图像训练学习单一字典,不能很好地对包含不同图像信息的图像块进行最优稀疏表示的问题,将图像灰度熵的思想引入到字典学习算法中,提出基于图像灰度熵的自适应字典学习算法。该算法将图像库作为训练样本,对图像库图像进行分块,计算各子块的灰度熵大小,依据灰度熵大小对子块进行分类,针对不同类别子块,设定不同K-奇异值分解算法参数,分别进行字典训练,从而得到多个不同的字典。根据灰度熵大小选择训练好的字典对待表示图像子块进行稀疏表示。仿真实验及结果表明,所提算法能够对图像进行较好的稀疏表示,图像的重构效果也得到了明显提升。