摘要

目的在计算机断层扫描(computed tomography,CT)影像中对骨组织部位进行自动分析和检测,对于骨科疾病的早期诊断具有重要意义,然而基于人工分析诊断的方法存在效率较低、诊断的准确性和客观一致性无法保证等问题。为此,本文研究构建一个骨组织病变检测的级联神经网络模型,以期为骨科医生的诊断提供支持。方法在影像预处理阶段使用改进的增强方法对CT影像进行对比度增强并获取影像中的人体有效部位;根据骨骼组织CT值(Hounsfield unit, HU)的分布范围进行阈值分割,得到大致的骨组织区域;以级联目标检测模型为研究基线,结合注意力机制与可变形卷积增加特征图的全局上下文的相关性,以适应形态多变的骨病灶;通过特征融合模块促进不同尺度特征信息之间的融合,并在多个尺度特征图上分别进行骨组织病变训练和预测。结果在Deep Lesion数据集上进行实验,实验结果表明,本文网络对骨病变检测的召回率(recall)、准确率(precision)、F1分数、平均精度(average precision, AP)分别为0.85、0.613、0.712以及0.816;较对照组中性能最优的通用CT病变检测网络对骨病变检测的召回率提升0.15。结论本文提出的网络模型对CT骨组织病变具有较好的检测效果,能够对骨组织病变判别诊断提供辅助支持,提高诊断效率,降低漏诊风险。