摘要

针对现有的纺织产品疵点分类方法数据集小,网络训练耗时较长以及准确率较低等问题,论文提出了一种使用迁移学习基于ALexNet模型的纺织产品疵点分类算法(Fabric Defect Classification Model based on AlexNet using Transfer Learning,FDAT),首先,针对纺织产品疵点数据集数据量少的问题,通过基于大型数据集训练得到模型训练参数权重,利用迁移学习方法构建基于AlexNet的纺织产品疵点分类方法;其次,对输入纺织产品疵点数据进行特征提取,使用softmax分类器针对特征提取结果进行分类;最后,在TILDA纺织产品疵点数据集上进行了计算机模拟实验,实验结果表明,提出的FDAT模型对比传统小波变换算法,人工神经网络,DenseNet,ResNet以及Xception,可以有效地解决小样本分类问题,提高算法的准确率的同时,缩短网络分类耗时。