摘要
针对现用PCB缺陷检测方法存在效率低、误检率高、通用性低、实时性差等问题,提出基于改进YOLOv4算法的PCB缺陷检测方法。使用改进二分K-means聚类结合交并比(IoU)损失函数确定锚框,解决预设锚框不适用PCB小目标缺陷检测的问题。引用MobileNetV3作为特征提取网络,提升对PCB小目标缺陷的检测性能,同时方便部署在现场轻量化移动端。引入Inceptionv3作为检测网络,利用多种卷积核进行运算满足PCB缺陷多类别的检测要求。以PCBDATASET数据集为测试对象,将本文方法与Faster R-CNN、YOLOv4、MobileNetV3-YOLOv4等开展对比验证实验。结果表明,本文方法均值平均精度(mAP)为99.10%,模型大小为53.2 MB,检测速度为43.01 FPS,检测mAP分别提升4.88%、0.05%、2.01%,模型大小分别减少0、203.2、3.3 MB,检测速度分别提升29.93、6.37、0.79 FPS,满足PCB工业生产现场高检测精度和检测速度要求。
- 单位