摘要
针对柴油机故障诊断方法中的信号时频表征及特征提取问题,提出一种基于振动信号快速稀疏分解与二维时频特征编码识别的柴油机智能故障诊断方法。首先,为了获得时、频聚集性优良的时频图像,提出一种随分解残差信号自适应更新Gabor字典的改进匹配追踪(adaptive matching pursuit,简称AMP)算法,利用AMP算法将柴油机振动信号分解后叠加各原子分量的Wigner-Ville分布,获取原信号的稀疏分解时频图像;然后,为提取时频图像的特征参量,提出了双向二维非负矩阵分解(two-directional,2-dimensional non-negative matrix factorization,简称TD2DNMF)算法,用于对时频图像的幅值矩阵进行特征编码,获取蕴含在时频图像内部的低维特征,并利用最近邻分类器实现了时频图像的自动分类识别。将提出的方法应用于4种不同状态柴油机气门故障的诊断试验中,结果表明,该方法能够获得无交叉项干扰、聚集性好的时频图像,使各时频分量的物理意义更加明确,并改进了传统图像模式识别中的特征参数提取方法,是一种有效的柴油机故障诊断方法。