摘要
为提升模拟电路故障隔离精度,结合基于故障特征间一维模糊度的特征选择算法,提出一种改进的lp范数约束多核超限学习机诊断模型。该模型通过将带权分类误差融入超限学习机优化目标函数中,基于自适应Boosting策略构建了一种3层多核学习框架。在新框架下通过自适应调整训练样本的权重分布,使得每层框架能够聚焦于不同故障样本,进而提升诊断模型的辨识力。通过对2个电路实例的诊断,结果表明:所提模型在不同范数约束下具有近似一致的诊断性能;当故障属性单一时,在平衡漏警、虚警的同时,能够显著提升诊断正确率;当多种属性的故障并存时,能够将难以辨识的故障更加准确地隔离到少数模糊组中。