摘要
智能交通系统中,由于车辆流动性大、道路拍摄环境恶劣等问题,传统深度学习大多只能识别车牌与数量,该领域数据集也极为稀少,基于这些问题提出一种EfficientNetV2为主干网络的图像识别模型.使用ImageNet的预训练参数,冻结部分网络快速提取图像特征,选取VOC2012数据集中交通工具部分进行领域适配,得到一个可移植性强的交通工具识别模型.将上一步得到的模型参数作为源域,二次迁移至车辆数据集,与ImageNet作为源域的单次迁移对比可知,领域相似性越高的领域迁移效果更好.最后,以上一步获得的特征提取网络及相应参数为基础,结合子空间变换法Coral对不同网络深度的特征进行约束,令模型适配特征分布有差异的新任务并加快收敛,并以随机抽取的少量样本检测模型是否有过拟合现象.通过实验可知,在小样本数据集下运用迁移学习后模型的识别精度和训练速度大幅提升,并且能便捷地再次使用于其它相似领域的识别任务.
- 单位