摘要

为了提高缺失数据下煤与瓦斯突出预测准确率,提出1种基于链式支持向量机多重插补(MICE_SVM)的鲸鱼优化算法(WOA)-极限学习机(ELM)预测模型,以淮南朱集矿区为例,选取5个煤与瓦斯突出影响指标作为模型特征,采用提出的MICE_SVM算法插补突出事故数据中缺失值,利用WOA优选ELM输入层权值及隐含层阈值,构建煤与瓦斯突出预测模型,将插补后数据用于WOA-ELM模型的训练与测试,并与其他模型的预测效果对比。研究结果表明:MICE_SVM插补前、后的有突出数据预测准确率分别为83.02%,90.41%,MICE_SVM显著提高了有突出预测准确率,对无突出和整体的预测准确率提高不明显;数据插补后WOA优化ELM对无突出、有突出和整体的预测准确率分别为97.94%,96.25%,96.48%,较优化前分别提高了5.79%,5.84%,5.55%,数据插补后WOA-ELM为最佳预测模型。