摘要
咖啡是世界三大饮料之一,严格把控咖啡品质具有重大意义。以三个不同品种的咖啡豆为对象,利用太赫兹时域光谱技术结合化学计量学实现咖啡豆品种的快速鉴别。采用多种预处理方法减小实验误差,利用主成分分析(PCA)对光谱矩阵进行降维。建立偏最小二乘判别分析(PLS-DA)二分类模型和支持向量机(SVM)、反向传播神经网络(BPNN)、随机森林(RF)多分类判别模型。PLS-DA二分类模型的定性判别效果较为理想,总正确率可达98%;在多分类模型中,基于基线校正建立的SVM模型的效果最佳,总正确率达到98%。本研究表明利用太赫兹光谱技术快速鉴别咖啡豆品种是可行的,建立了较优的基于基线校正后的支持向量机模型,以为太赫兹时域光谱技术在定性检测其他农产品时提供经验参考。
-
单位机电工程学院; 华东交通大学