摘要

针对传统方法在微小振动故障诊断中存在的特征识别效率低和样本数量有限等问题,提出匹配小波深度模型迁移学习方法。首先利用Morse连续小波对一维故障信号进行匹配升维,捕捉微小变化,得到可视化强化特征图像;其次对深度迁移网络源域模型进行有效迁移,该模型具有高效的图像学习经验,可降低目标域训练样本数量;最后在模型迁移中根据有限数据进行流程的参数优化。实验证明,该方法泛化能力强,可对多工况下微小特征进行检测与定位,并有效减少对数据的依赖,能够极大提高运算速度和诊断精度。