摘要
针对机器人中存在非线性不确性项LuGre动态摩擦和非对称死区的问题,提出采用模糊RBF神经网络及模糊逻辑分别对动态摩擦及死区进行补偿,且实时、自适应训练非线性动态摩擦项及非对称死区项的参数,实现对实际机器人系统准确再现的滑模变鲁棒控制算法,并论证了该算法的Lyapunov稳定性。通过在2自由度机器人上的仿真,证明该算法提高了机器人轨迹跟踪精度、控制力矩及摩擦力矩两者的稳定性。同时发现了该机器人控制力矩的脉冲式补偿误差、摩擦模型中存在类菱形吸引子、缺乏死区补偿将导致控制系统极限环振荡等非线性动力学现象,以及死区逆模型中ε的估计对系统的精度有决定性作用。
- 单位