摘要

为了降低服装目标检测模型的参数量和浮点型计算量,提出一种改进的轻量级服装目标检测模型——GYOLOv5s.首先使用Ghost卷积重构YOLOv5s的主干网络;然后使用DeepFashion2数据集中的部分数据进行模型训练和验证;最后将训练好的模型用于服装图像的目标检测.实验结果表明, G-YOLOv5s的mAP达到71.7%,模型体积为9.09 MB,浮点型计算量为9.8 G FLOPs,与改进前的YOLOv5s网络相比,模型体积压缩了34.8%,计算量减少了41.3%,精度仅下降1.3%,方便部署在资源有限的设备中使用.

全文