摘要
目的 提出一种新型的肋骨骨折检测网络Rib-Net,探讨其进行肋骨骨折检测的可行性与准确性,以减少骨折漏诊案例。方法 采用公开数据集RibFrac Dataset,其数据集划分为训练集(420例)、验证集(80例)及测试集(160例)。Rib-Net由目标检测集成网络ED-Net、完全候选框融合算法(CBF)与分割模型3D Unet构成。首先,集成Retina Unet、UFRCNN+与Mask RCNN组成ED-Net,预测肋骨骨折候选框;其次,设计全新的CBF,融合存在重叠的骨折候选框,生成定位精准、置信度准确的候选框;最后,利用Unet对肋骨骨折进行分割,实现肋骨骨折的进一步精确定位。结果 在“MICCAI 2020 RibFrac Challenge:Rib Fracture Detection and Classification”挑战赛平台上,Rib-Net检测结果达到了最优成绩,其召回率、无限制接受者操作特性曲线(FROC)值及Dice相似指数分别为92.3%,0.859和0.61。结论 Rib-Net网络可高效精准地对胸部CT影像进行肋骨骨折检测定位,有效协助医生做出准确诊断。
-
单位复旦大学; 基础医学院