摘要
针对风力机叶片表面出现的磨损等早期损伤特征现象,传统损伤检测方法存在高成本低效率等问题,设计了一种基于机器视觉和图像处理相结合的风力机叶片损伤检测系统。通过搭建机器视觉实验平台完成风力机损伤叶片图像采集和处理,通过使用HSV进行颜色平面提取,卷积运算、高亮显示操作滤波,选用自动阈值分割方法中最小均匀性度量法进行阈值分割处理,最后通过数学形态学去噪处理,腐蚀、膨胀、开运算等操作完成特征提取,设计了基于LabVIEW的风力机叶片智能图像识别系统,通过对图像处理后的损伤特征识别效果调试,完成性能测试。实验结果表明:基于该算法处理后的图像在设计的识别系统内准确识别率达到92.3%,并对裂纹损伤进行目标测量得到实际长度且绝对误差最大为3 mm。该系统满足叶片检损的要求,实现对风力机叶片表面裂纹、轮廓磨损等损伤的图像处理和识别,并对损伤处进行标记、计数和测量,实现无损探伤,为兆瓦级风力机叶片损伤检测提供方法借鉴和图像处理、系统设计的技术支持。
-
单位内蒙古农业大学; 机电工程学院