摘要
鼻咽癌CT图像分割是鼻咽癌诊断和治疗的先行任务,然而,由于鼻咽癌细胞的外形多样、灰度不均匀、边界模糊、病变形状复杂等因素使得分割难以准确。针对这一问题,提出了一种基于三维深度卷积神经网络的鼻咽癌CT图像分割方法,三维深度卷积神经网络框架的前5层采用卷积核为33的普通卷积,中间6层采用空洞率为2的膨胀卷积,后6层采用空洞率为4的膨胀卷积,每2个卷积层之间有一个残差连接,最后利用Softmax函数对每个像素点进行分类。膨胀卷积有助于得到精确的密集预测和沿物体边界的精细分割图,残差连接使深度卷积神经网络中的信息传播平滑,并能提高训练速度。实验结果表明,在鼻咽癌CT图像分割中该方法与其他主流方法相比有更好的性能。
- 单位